Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Nat Commun ; 13(1): 4696, 2022 08 18.
Article in English | MEDLINE | ID: covidwho-1991586

ABSTRACT

Mutations in the spike glycoproteins of SARS-CoV-2 variants of concern have independently been shown to enhance aspects of spike protein fitness. Here, we describe an antibody fragment (VH ab6) that neutralizes all major variants including the recently emerged BA.1 and BA.2 Omicron subvariants, with a unique mode of binding revealed by cryo-EM studies. Further, we provide a comparative analysis of the mutational effects within previously emerged variant spikes and identify the structural role of mutations within the NTD and RBD in evading antibody neutralization. Our analysis shows that the highly mutated Gamma N-terminal domain exhibits considerable structural rearrangements, partially explaining its decreased neutralization by convalescent sera. Our results provide mechanistic insights into the structural, functional, and antigenic consequences of SARS-CoV-2 spike mutations and highlight a spike protein vulnerability that may be exploited to achieve broad protection against circulating variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Epitopes/genetics , Humans , Immunization, Passive , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , COVID-19 Serotherapy
2.
iScience ; 25(8): 104798, 2022 Aug 19.
Article in English | MEDLINE | ID: covidwho-1936592

ABSTRACT

The emergence of SARS-CoV-2 variants of concern (VOCs) requires the development of next-generation biologics with high neutralization breadth. Here, we characterized a human VH domain, F6, which we generated by sequentially panning large phage-displayed VH libraries against receptor binding domains (RBDs) containing VOC mutations. Cryo-EM analyses reveal that F6 has a unique binding mode that spans a broad surface of the RBD and involves the antibody framework region. Attachment of an Fc region to a fusion of F6 and ab8, a previously characterized VH domain, resulted in a construct (F6-ab8-Fc) that broadly and potently neutralized VOCs including Omicron. Additionally, prophylactic treatment using F6-ab8-Fc reduced live Beta (B.1.351) variant viral titers in the lungs of a mouse model. Our results provide a new potential therapeutic against SARS-CoV-2 variants including Omicron and highlight a vulnerable epitope within the spike that may be exploited to achieve broad protection against circulating variants.

3.
Front Immunol ; 13: 869825, 2022.
Article in English | MEDLINE | ID: covidwho-1809406

ABSTRACT

Phage display is a well-established technology for in vitro selection of monoclonal antibodies (mAb), and more than 12 antibodies isolated from phage displayed libraries of different formats have been approved for therapy. We have constructed a large size (10^11) human antibody VH domain library based on thermo-stable, aggregation-resistant scaffolds. This diversity was obtained by grafting naturally occurring CDR2s and CDR3s from healthy donors with optimized primers into the VH library. This phage-displayed library was used for bio-panning against various antigens. So far, panels of binders have been isolated against different viral and tumor targets, including the SARS-CoV-2 RBD, HIV-1 ENV protein, mesothelin and FLT3. In the present study, we discuss domain library construction, characterize novel VH binders against human CD22 and PD-L1, and define our design process for antibody domain drug conjugation (DDC) as tumoricidal reagents. Our study provides examples for the potential applications of antibody domains derived from library screens in therapeutics and provides key information for large size human antibody domain library construction.


Subject(s)
COVID-19 , Immunoglobulin Heavy Chains , Antibodies, Monoclonal , B7-H1 Antigen , Humans , Peptide Library , SARS-CoV-2 , Sialic Acid Binding Ig-like Lectin 2/metabolism
4.
STAR Protoc ; 2(3): 100617, 2021 09 17.
Article in English | MEDLINE | ID: covidwho-1386745

ABSTRACT

This protocol is a comprehensive guide to phage display-based selection of virus neutralizing VH antibody domains. It details three optimized parts including (1) construction of a large-sized (theoretically > 1011) naïve human antibody heavy chain domain library, (2) SARS-CoV-2 antigen expression and stable cell line construction, and (3) library panning for selection of SARS-CoV-2-specific antibody domains. Using this protocol, we identified a high-affinity neutralizing human VH antibody domain, VH ab8, which exhibits high prophylactic and therapeutic efficacy. For complete details on the use and execution of this protocol, please refer to Li et al. (2020).


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Variable Region/immunology , Peptide Library , SARS-CoV-2/immunology , Amino Acid Sequence , Base Sequence , COVID-19/virology , Cell Surface Display Techniques/methods , Humans , SARS-CoV-2/isolation & purification , Sequence Homology
5.
Proc Natl Acad Sci U S A ; 117(47): 29832-29838, 2020 11 24.
Article in English | MEDLINE | ID: covidwho-900111

ABSTRACT

Effective therapies are urgently needed for the SARS-CoV-2/COVID-19 pandemic. We identified panels of fully human monoclonal antibodies (mAbs) from large phage-displayed Fab, scFv, and VH libraries by panning against the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) glycoprotein. A high-affinity Fab was selected from one of the libraries and converted to a full-size antibody, IgG1 ab1, which competed with human ACE2 for binding to RBD. It potently neutralized replication-competent SARS-CoV-2 but not SARS-CoV, as measured by two different tissue culture assays, as well as a replication-competent mouse ACE2-adapted SARS-CoV-2 in BALB/c mice and native virus in hACE2-expressing transgenic mice showing activity at the lowest tested dose of 2 mg/kg. IgG1 ab1 also exhibited high prophylactic and therapeutic efficacy in a hamster model of SARS-CoV-2 infection. The mechanism of neutralization is by competition with ACE2 but could involve antibody-dependent cellular cytotoxicity (ADCC) as IgG1 ab1 had ADCC activity in vitro. The ab1 sequence has a relatively low number of somatic mutations, indicating that ab1-like antibodies could be quickly elicited during natural SARS-CoV-2 infection or by RBD-based vaccines. IgG1 ab1 did not aggregate, did not exhibit other developability liabilities, and did not bind to any of the 5,300 human membrane-associated proteins tested. These results suggest that IgG1 ab1 has potential for therapy and prophylaxis of SARS-CoV-2 infections. The rapid identification (within 6 d of availability of antigen for panning) of potent mAbs shows the value of large antibody libraries for response to public health threats from emerging microbes.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19 Vaccines/immunology , COVID-19/therapy , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibody-Dependent Cell Cytotoxicity , COVID-19 Serological Testing/standards , COVID-19 Vaccines/standards , Chlorocebus aethiops , Cricetinae , Female , Humans , Immunization, Passive/methods , Immunization, Passive/standards , Immunogenicity, Vaccine , Immunoglobulin G/blood , Immunoglobulin G/immunology , Mice , Mice, Inbred BALB C , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Vero Cells , COVID-19 Serotherapy
6.
Cell ; 183(2): 429-441.e16, 2020 10 15.
Article in English | MEDLINE | ID: covidwho-878393

ABSTRACT

Novel COVID-19 therapeutics are urgently needed. We generated a phage-displayed human antibody VH domain library from which we identified a high-affinity VH binder ab8. Bivalent VH, VH-Fc ab8, bound with high avidity to membrane-associated S glycoprotein and to mutants found in patients. It potently neutralized mouse-adapted SARS-CoV-2 in wild-type mice at a dose as low as 2 mg/kg and exhibited high prophylactic and therapeutic efficacy in a hamster model of SARS-CoV-2 infection, possibly enhanced by its relatively small size. Electron microscopy combined with scanning mutagenesis identified ab8 interactions with all three S protomers and showed how ab8 neutralized the virus by directly interfering with ACE2 binding. VH-Fc ab8 did not aggregate and did not bind to 5,300 human membrane-associated proteins. The potent neutralization activity of VH-Fc ab8 combined with good developability properties and cross-reactivity to SARS-CoV-2 mutants provide a strong rationale for its evaluation as a COVID-19 therapeutic.


Subject(s)
Coronavirus Infections/drug therapy , Immunoglobulin Heavy Chains/administration & dosage , Immunoglobulin Variable Region/administration & dosage , Peptide Library , Pneumonia, Viral/drug therapy , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/ultrastructure , Antibodies, Viral/administration & dosage , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Antibodies, Viral/ultrastructure , Antibody Affinity , COVID-19 , Cricetinae , Female , Humans , Immunoglobulin Fc Fragments/immunology , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Heavy Chains/ultrastructure , Immunoglobulin Variable Region/chemistry , Immunoglobulin Variable Region/immunology , Immunoglobulin Variable Region/ultrastructure , Mice , Mice, Inbred BALB C , Mutation , Pandemics , Peptidyl-Dipeptidase A/metabolism , Protein Domains , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/ultrastructure , COVID-19 Drug Treatment
7.
Vaccine ; 38(46): 7205-7212, 2020 10 27.
Article in English | MEDLINE | ID: covidwho-779733

ABSTRACT

The development of an effective vaccine against SARS-CoV-2 is urgently needed. We generated SARS-CoV-2 RBD-Fc fusion protein and evaluated its potency to elicit neutralizing antibody response in mice. RBD-Fc elicited a higher neutralizing antibodies titer than RBD as evaluated by a pseudovirus neutralization assay and a live virus based microneutralization assay. Furthermore, RBD-Fc immunized sera better inhibited cell-cell fusion, as evaluated by a quantitative cell-cell fusion assay. The cell-cell fusion assay results correlated well with the virus neutralization potency and could be used for high-throughput screening of large panels of anti-SARS-CoV-2 antibodies and vaccines without the requirement of live virus infection in BSL3 containment. Moreover, the anti-RBD sera did not enhance the pseudotyped SARS-CoV-2 infection of K562 cells. These results demonstrate that Fc fusion can significantly improve the humoral immune response to recombinant RBD immunogen, and suggest that RBD-Fc could serve as a useful component of effective vaccines against SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Coronavirus Infections/prevention & control , Immunoglobulin Fc Fragments/immunology , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Spike Glycoprotein, Coronavirus/immunology , Viral Vaccines/immunology , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Betacoronavirus/immunology , COVID-19 , COVID-19 Vaccines , Cell Fusion , Cell Line , Coronavirus Infections/immunology , Enzyme-Linked Immunosorbent Assay , Female , HEK293 Cells , High-Throughput Screening Assays/methods , Humans , Immunity, Humoral/immunology , Immunoglobulin Fc Fragments/genetics , Mice , Mice, Inbred BALB C , Neutralization Tests , Peptidyl-Dipeptidase A/genetics , Protein Domains/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Vaccines, Subunit/immunology
8.
MAbs ; 12(1): 1778435, 2020 01 01.
Article in English | MEDLINE | ID: covidwho-601168

ABSTRACT

Effective therapies are urgently needed for COVID-19. Here we describe the identification of a new stable human immunoglobulin G1 heavy-chain variable (VH) domain scaffold that was used for the construction of a large library, lCAT6, of engineered human VHs. This library was panned against the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) glycoprotein. Two VH domains (VH ab6 and VH m397) were selected and fused to Fc for increased half-life in circulation. The VH-Fc ab6 and m397 specifically neutralized SARS-CoV-2 with high potencies (50% neutralization at 0.35 µg/ml and 1.5 µg/ml, respectively) as measured by two independent replication-competent virus neutralization assays. Ab6 and m397 competed with ACE2 for binding to RBD, suggesting a competitive mechanism of virus neutralization. These VH domains may have potential applications for prophylaxis and therapy of COVID-19 alone or in combination, as well as for diagnosis and as tools for research.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections , Pandemics , Pneumonia, Viral , Single-Domain Antibodies/immunology , Antibodies, Monoclonal , COVID-19 , Humans , Immunoglobulin Heavy Chains/immunology , Peptide Library , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL